导数与微分
定义
导数
Δy=f(x+Δx)−f(x)limΔx→0ΔyΔx存在\Delta y = f(x + \Delta x) - f(x) \\ \lim\limits_{\Delta x \to 0} \dfrac{\Delta y}{\Delta x}存在Δy=f(x+Δx)−f(x)Δx→0limΔxΔy存在 ,记为 f′(x0)或dydx∣x=x0f'(x_0)或\dfrac{dy }{dx}|_{x=x_0}f′(x0)或dxdy∣x=x0
可微
Δy=f(x0+Δx)−f(x0)(=f(x)−f(x0),Δx=x−x0)\Delta y=f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)\left(=f(x)-f\left(x_{0}\right), \Delta x=x-x_{0}\right)Δy=f(x0+Δx)−f(x0)(=f(x)−f(x0),Δx=x−x0) ,记为 dy∣x=x0=AΔx或dy∣x=x0=Adxdy |_{x = x_0} = A \Delta x 或dy |_{x = x_0} = A dxdy∣x=x0=AΔx或dy∣x=x0=Adx
条件
Δy=AΔx+o(Δx)\Delta y=A \Delta x+o( \Delta x)Δy=AΔx+o(Δx)
Notes
f′(a)=limΔx→0f(a+Δx)−f(a)Δx\displaystyle f^{\prime}(a)=\lim _{\Delta x \rightarrow 0} \frac{f(a+\Delta x)-f(a)}{\Delta x}f′(a)=Δx→0limΔxf(a+Δx)−f(a)
f′(a)=limx→af(x)−f(a)x−af^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}f′(a)=limx→ax−af(x)−f(a)
Δx→0{Δx→0−Δx→0+\Delta x \rightarrow 0\left\{\begin{array}{l} \Delta x \rightarrow 0^{-} \\ \Delta x \rightarrow 0^{+} \end{array}\right.Δx→0{Δx→0−Δx→0+
x→a{x→a+x→a−x \rightarrow a\left\{\begin{array}{l} x \rightarrow a^{+} \\ x \rightarrow a^{-} \end{array}\right.x→a{x→a+x→a−
左导数: limΔx→0−ΔyΔx=limx→a−f(x)−f(a)x−a==deff−′(a)\lim _{\Delta x \rightarrow 0^{-}} \frac{\Delta y}{\Delta x}=\lim _{x \rightarrow a^{-}} \frac{f(x)-f(a)}{x-a}\overset{def}{==}f'_-(a) limΔx→0−ΔyΔx=limx→a−f(x)−f(a)x−a=def=f−′(a)\displaystyle \lim _{\Delta x \rightarrow 0^{-}} \frac{\Delta y}{\Delta x}=\lim _{x \rightarrow a^{-}} \frac{f(x)-f(a)}{x-a} \stackrel{\text {def}}{=}=f_{-}^{\prime}(a)Δx→0−limΔxΔy=x→a−limx−af(x)−f(a)=def=f−′(a)
右导数: limΔx→0+ΔyΔx=limx→a+f(x)−f(a)x−a=def=f+′(a)\displaystyle \lim _{\Delta x \rightarrow 0^{+}} \frac{\Delta y}{\Delta x}=\lim _{x \rightarrow a^{+}} \frac{f(x)-f(a)}{x-a} \stackrel{\text {def}}{=}=f_{+}^{\prime}(a)Δx→0+limΔxΔy=x→a+limx−af(x)−f(a)=def=f+′(a)
f′(a)∃⇔f−′(a)∧f+′(a)∧f−′(a)=f+′(a)f'(a)\exists \Leftrightarrow f'_-(a)\wedge f'_+(a)\wedge f'_-(a) = f'_+(a)f′(a)∃⇔f−′(a)∧f+′(a)∧f−′(a)=f+′(a)
f(x)在x=a点可导⇒f(x)在x=a点处连续f(x)在x=a点处连续̸=f(x)在x=a点可导f(x)在x= a点可导\Rightarrow f(x)在x=a点处连续\\ f(x)在x=a点处连续 \ne f(x)在x= a点可导f(x)在x=a点可导⇒f(x)在x=a点处连续f(x)在x=a点处连续̸=f(x)在x=a点可导
f(x)连续∧limx→af(x)−bx−a⇒{f(a)=bf′(a)=A\displaystyle f(x)连续\wedge \lim _{x \rightarrow a} \frac{f(x)-b}{x-a} \Rightarrow \left\{\begin{array}{l} f(a)=b \\ f^{\prime}(a) = A \end{array}\right.f(x)连续∧x→alimx−af(x)−b⇒{f(a)=bf′(a)=A
微分
f(x)在x=x0可到⇔f(x)在x=x0处可微f(x)在x = x_0可到\Leftrightarrow f(x)在x = x_0处可微f(x)在x=x0可到⇔f(x)在x=x0处可微
f(x)在x=x0处可微⇔f(x)在x=x0处连续f(x)在x = x_0处可微 \Leftrightarrow f(x)在x= x_0处连续f(x)在x=x0处可微⇔f(x)在x=x0处连续
求导工具
基本公式
(c)′=0(c)' = 0 (c)′=0
(xa)′=axa−1(x^a)' = a x^{a - 1} (xa)′=axa−1
(ax)′=axlna([ex]′=ex)(a^x)' = a ^x \ln a([e^x]' = e^x) (ax)′=axlna([ex]′=ex)
logax=1xlna([lnx]′=1x)\log _{a} x=\frac{1}{x\ln a} ([\ln x]'=\frac{1}{x})logax=xlna1([lnx]′=x1)
三角函数
(sinx)′=cosx(cosx)′=−sinx(tanx)′=sec2x(cotx)′=−csc2x(secx)′=secxtanx(cotx)′=−cscxcotx\begin{aligned} &(\sin x)'=\cos x\\ &(\cos x)^{\prime}=-\sin x\\ &(\tan x)^{\prime}=\sec ^{2} x\\ &(\cot x)^{\prime}=-\csc^{2} x\\ &(\sec x)^{\prime}=\sec x \tan x\\ &(\cot x )^{\prime}=-\csc x \cot x \end{aligned}(sinx)′=cosx(cosx)′=−sinx(tanx)′=sec2x(cotx)′=−csc2x(secx)′=secxtanx(cotx)′=−cscxcotx
反三角函数
(arcsinx)′=11−x2(arccosx)′=1−1−x2(arctanx)=11+x2(cotx)′=−11+x2\begin{array}{l} (\arcsin x)'=\frac{1}{\sqrt{1-x^{2}}} \\ (\arccos x)'=\frac{1}{-\sqrt{1-x^{2}}} \\ (\arctan x)=\frac{1}{1+x^{2}} \\ ( \cot x)^{\prime}=-\frac{1}{1+x^2} \end{array}(arcsinx)′=1−x21(arccosx)′=−1−x21(arctanx)=1+x21(cotx)′=−1+x21
求导方法
四则运算求导
(u±v)′=u′±v′(uv)′=u′v+uv′(ku)′=ku′(uvw)′=u′vw+uv′w+uvw′uv=u′v−uv′v2\begin{array}{l} (u \pm v)' = u' \pm v'\\ (uv)' = u'v + uv'\\ (ku)' = ku'\\ (uvw)' = u'vw + uv'w+ uvw'\\ \dfrac{u}{v} = \dfrac{u'v - uv'}{v^2} \end{array}(u±v)′=u′±v′(uv)′=u′v+uv′(ku)′=ku′(uvw)′=u′vw+uv′w+uvw′vu=v2u′v−uv′
链式求导法则
dydx=dydu⋅dudx=f′(u)⋅φ′(x)=f′[φ(x)]φ′(x)\displaystyle \frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}=f^{\prime}(u) \cdot \varphi^{\prime}(x)=f^{\prime}[\varphi(x)] \varphi^{\prime}(x)dxdy=dudy⋅dxdu=f′(u)⋅φ′(x)=f′[φ(x)]φ′(x)
反函数求导
[f−1(x)]′=1f′(x)[f^{-1}(x)]' = \dfrac{1}{f'(x)}[f−1(x)]′=f′(x)1
证明原理: Δy=O(Δx)\Delta y = O(\Delta x)Δy=O(Δx)
隐函数求导
参数方程求导
dydx=dy/dtdx/dt=ψ′(t)φ′(t)\displaystyle \frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{\psi'(t)}{\varphi'(t)}dxdy=dx/dtdy/dt=φ′(t)ψ′(t) ``
重要导数
(u±v)(n)=u(n)±v(n)(u \pm v) ^{(n)} = u^{(n)} \pm v^{(n)}(u±v)(n)=u(n)±v(n)
(uv)(n)=Cn0u(n)v+Cn1u(n−1)v′+⋯+Cnnuv(n)(uv) ^{(n)} = C_n^0 u^{(n)}v + C_n^1 u^{(n - 1) }v' + \cdots + C_n^n uv^{(n)}(uv)(n)=Cn0u(n)v+Cn1u(n−1)v′+⋯+Cnnuv(n)
(sinx)(n)=sin(x+nπ2)(\sin x)^{(n)} = sin (x + \dfrac{n\pi}{2})(sinx)(n)=sin(x+2nπ)
(cosx)(n)=cos(x+nπ2)(\cos x)^{(n)} = \cos (x + \dfrac{n\pi}{2})(cosx)(n)=cos(x+2nπ)
(1ax+b)(n)=(−1)nn!an(ax+b)n+1\displaystyle (\frac{1}{ax+ b})^{(n)} = \frac{(-1)^n n! a^n}{(ax+b)^{n + 1}}(ax+b1)(n)=(ax+b)n+1(−1)nn!an