空间的平行关系 |
空间的平行关系
线线平行
判定
定义:空间两条直线共面,且没有公共点
平行的传递性:空间两直线垂直于第三条直线,则这两条直线平行
线面平行的性质定理:直线平行平面,则直线与过该直线和已知平面的交线平行
面面平行的性质定理:一个平面与已知两平行平面相交,则交线平行
线面垂直的性质定理:同垂直于一个平面的两直线平行
平面几何中的判定方法
核心素养:逻辑推理,直观想象,数学建模
线面平行
定义:直线与平面没有交点
线面平行的判定定理:平面外一条直线与平面内一条直线平行,则直线与平面平行
面面平行的定义:两平面平行,则其中一个平面内的任意一条直线会平行于第二个平面
结论:一条直线与一个平面都与第二个平面平行,若直线不在第一个平面内,则直线与第一个平面平行
数学思想方法:转化与化归,
面面平行
定义:两个平面没有公共点
判定定理:一个平面内有两条相交线都平行于第二个平面,则这两个平面平行
线面垂直的推论:空间两平面都垂直于一条直线,则这两个平面平行
平行的传递性:两个平面都平行于第三个平面,则这两个平面平行