微扰论
定态微扰论:非简并情形
一级微扰公式
零级方程: H^0Ψn(0)=En(0)Ψn(0) \hat H_0 \Psi_n^{(0)} = E_n^{(0)} \Psi_n^{(0)} H^0Ψn(0)=En(0)Ψn(0)
一级方程: (H^0−En(0))Ψn(1)=−(H^′−En(1))Ψn(0)(\hat H_0 - E_n^{(0)})\Psi_n^{(1)} =-( \hat H' - E_n^{(1)}) \Psi_n^{(0)} (H^0−En(0))Ψn(1)=−(H^′−En(1))Ψn(0)
二级方程: (H^0−En(0))Ψn(2)=−(H^′−En(1))Ψn(1)+En(2)Ψn(0)(\hat H_0 - E_n^{(0)})\Psi_n^{(2)} =-( \hat H' - E_n^{(1)}) \Psi_n^{(1)} + E_n^{(2)}\Psi_n^{(0)} (H^0−En(0))Ψn(2)=−(H^′−En(1))Ψn(1)+En(2)Ψn(0)
一级微扰波函数按零级波函数展开: Ψn(1)=∑manm(1)Ψn(0)\Psi_n^{(1)} =\sum _m a_{nm}^{(1)}\Psi_n^{(0)} Ψn(1)=∑manm(1)Ψn(0)
一级微扰能:En(1)=∫Ψn(0)∗H^′Ψn(0)dτ=H^nn′ E_n^{(1)} = \int \Psi_n^{(0)*}\hat H'\Psi_n^{(0)}d\tau = \hat H'_{nn} En(1)=∫Ψn(0)∗H^′Ψn(0)dτ=H^nn′
一级微扰波函数: Ψn(1)=∑mHmn′En(0)Ψm(0) \Psi _{n}^{\left( 1 \right)}=\sum_m{\frac{H'_{mn}}{E_n^{( 0 )}}\Psi _{m}^{\left( 0 \right)}} Ψn(1)=∑mEn(0)Hmn′Ψm(0) ( m̸=nm \ne n(m̸=n )
二级微扰公式
二级微扰能: En(0) = ∑m′∣Hmn′∣2En(0)−Em(0)E_{n}^{\left( 0 \right)}\ =\ \sum_m'{\frac{|H'_{mn}|^2}{E_{n}^{\left( 0 \right)}-E_{m}^{\left( 0 \right)}}} En(0) = ∑m′En(0)−Em(0)∣Hmn′∣2
微扰论使用条件
H0H_0H0 有离散谱,对于连续谱不成立
H0H_0H0 无简并
定态微扰论:简并情形
fn为k度简并f_n\text{为}k\text{度简并}fn为k度简并
Hji′ = ∫ϕnj(0)∗H^′ϕni(0)dτ∣H11′−En(1)H12′...H1k′H21′H22′−En(1)...H2k′⋮⋮⋱Hk1′Hk2′...Hkk′−En(1)∣ = 0 H'_{ji}\ =\ \int{\phi _{nj}^{\left( 0 \right) *}\widehat{H}'\phi _{ni}^{\left( 0 \right)}d\tau} \quad \left| \begin{matrix} H'_{11}-E_{n}^{\left( 1 \right)}& H'_{12}& ...& H'_{1k}\\ H'_{21}& H'_{22}-E_{n}^{\left( 1 \right)}& ...& H'_{2k}\\ \vdots& \vdots& \ddots& \\ H'_{k1}& H'_{k2}& ...& H'_{kk}-E_{n}^{\left( 1 \right)}\\ \end{matrix} \right|\ =\ \ 0\ Hji′ = ∫ϕnj(0)∗H′ϕni(0)dτ∣∣∣∣∣∣∣∣∣∣H11′−En(1)H21′⋮Hk1′H12′H22′−En(1)⋮Hk2′......⋱...H1k′H2k′Hkk′−En(1)∣∣∣∣∣∣∣∣∣∣ = 0
Stark效应
原子或分子在电场作用下能级和光谱发生分裂的现象
一级Stark效应:氢原子的能级裂距正比于E
二级Stark效应:碱金属原子的能级裂距正比于E的平方
量子跃迁
哈密顿量不含时体系t时刻的量子态
∣Ψ(t)>=U(t)∣Ψ(0)> = e−iHt/ℏ∣Ψ(0)>H∣Ψn>=En∣Ψn>∣Ψ(0)>=∑nan∣Ψn>∣Ψ(t)>=∑nane−iEnt/ℏ∣Ψn> \left| \Psi \left( t \right) \right> =U\left( t \right) \left| \Psi \left( 0 \right) \right> \ =\ e^{-iHt/\hbar }\left| \Psi \left( 0 \right) \right> \\ H\left| \Psi _n \right> =E_n\left| \Psi _n \right> \\ \left| \Psi \left( 0 \right) \right> =\sum_n{a_n\left| \Psi _n \right>} \\ \left| \Psi \left( t \right) \right> =\sum_n{a_ne}^{-iE_nt/\hbar }\left| \Psi _n \right> ∣Ψ(t)⟩=U(t)∣Ψ(0)⟩ = e−iHt/ℏ∣Ψ(0)⟩H∣Ψn⟩=En∣Ψn⟩∣Ψ(0)⟩=∑nan∣Ψn⟩∣Ψ(t)⟩=∑nane−iEnt/ℏ∣Ψn⟩